0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Thermal Hysteresis Effect and Its Compensation on Electro-Mechanical Impedance Monitoring of Concrete Structure Embedded with Piezoelectric Sensor

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 13
Page(s): 2564
DOI: 10.3390/buildings13102564
Abstract:

Piezoelectric (PZT) sensors employed in the electro-mechanical impedance/admittance (EMI/EMA) technique are vulnerable to temperature variations when applied to concrete structural health monitoring (SHM). However, in practice, the ambient temperature transmitted from the air or surface to the concrete inner part is time-dependent during its monitoring process, which inflicts a critical challenge to ensure accurate signal processing for PZT sensors embedded inside the concrete. This paper numerically and experimentally investigated the thermal hysteresis effect on EMA-based concrete structure monitoring via an embedded PZT sensor. In the numerical modeling, a 3D finite element model of a concrete cube embedded with a PZT sensor was generated, where thermal hysteresis in the concrete, adhesive coat, and sensor was fully incorporated by introducing a temperature gradient. In the experiment, an equal-sized concrete cube installed with a cement-embedded PZT (CEP) sensor was cast and heated for 180 min at four temperature regimes for EMA monitoring. Experimental results, as a cogent validation of the simulation, indicated that EMA characteristics were functionally correlated to the dual effect of both heat transfer and the temperature regime. Moreover, a new approach relying on the frequency/magnitude of the maximum resonance peak in the EMA spectrum was proposed to effectively compensate for the thermal hysteresis effect, which could be regarded as a promising alternative for future applications.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10744685
  • Published on:
    28/10/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine