0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Stabilization of Shield Muck Treated with Calcium Carbide Slag–Fly Ash

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1707
DOI: 10.3390/buildings13071707
Abstract:

Solidifying shield muck with calcium carbide slag and fly ash as curing agents was proposed as a highly efficient method for reusing waste shield muck. The compaction test, unconfined compression test, and dry–wet cycle test were used to evaluate the compressive strength, water immersion stability, and durability of the cured soil. The stress–strain curve and microscopic test were employed to analyze the compression damage law, mineral composition, and microscopic morphology of the cured soil, and to analyze the mechanism of calcium carbide slag–fly ash-cured shield muck. It was found that calcium carbide slag–fly ash can significantly improve the compressive strength of shield muck, and the strength of cured soil increases and then decreases with an increase in calcium carbide slag and fly ash and increases with curing age. The strength was highest when the content of calcium carbide slag and fly ash was 10% and 15%, respectively. Dry–wet cycle tests showed that the specimens had good water immersion stability and durability, and the stress–strain curve of the specimen changed from strain hardening to strain softening after dry–wet cycles. The internal particles of the cured soil were mainly cemented and filled with C-(A)-S-H colloid and calcium alumina (AFt), which both support the pores between the soil and form a skeleton structure to enhance the strength of the soil and lend it good mechanical properties.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737168
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine