0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Shear Transfer Mechanism between CFRP Grid and EPS Rigid Foam Insulation of Precast Concrete Sandwich Panels

Author(s): ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 928
DOI: 10.3390/buildings13040928
Abstract:

An experimental program was implemented to investigate the shear transfer mechanism of carbon-fiber-reinforced polymer (CFRP) grids and expanded polystyrene (EPS) rigid foam insulation in three wythe precast concrete sandwich wall panels. The purpose of the research was to measure the shear flow capacity and to observe the failure mode(s) of precast concrete sandwich panels manufactured with a CFRP grid shear transfer mechanism between wythes. Six precast concrete sandwich panels were examined by push-out tests in which the center concrete wythe was pushed downward with respect to two outer concrete wythes. It was observed that the average shear flow capacity of the specimens having 2 in (51 mm) thick foam was higher than that of the specimens having 4 in (102 mm) thick foam. In addition, stiffness decreased significantly when the thickness of the EPS insulation increased. The failure mode for the panels included relative displacement between the center concrete wythe and the outer concrete wythes. Test results showed that panels tended to fail by CFRP grid rupture, CFRP grid pull-out, and loss of bond at the concrete/foam interface. Further tests should be performed to fully comprehend the nature of the shear transfer mechanism between the specific CFRP grid used and EPS rigid foam insulation.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728207
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine