0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Research on the Crushing of Reinforced Concrete Two-Way Slabs by Pulse Power Discharge Technology

Author(s):



Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 14
Page(s): 1222
DOI: 10.3390/buildings14051222
Abstract:

The application of pulse power discharge (PPD) technology in the crushing and dismantling of concrete structures has characteristics related to both green and environmental protection, as well as safety and reliability, with broad application prospects in the construction and municipal engineering fields in dense urban areas. Nevertheless, the research into using this technology to break reinforced concrete (RC) slabs is very limited, while the influence of key parameters on the crushing effect of reinforced concrete slabs is not clear. To solve this problem, a finite element model of an RC slab was established by ABAQUS. The effect of a shock wave generated by PPD on the surrounding concrete was simulated by an explosion-load equivalent, and the development process of concrete crack was simulated by a cohesive force model. Based on the results of the model analysis, the effects of reinforcement spacing, as well as diameter and concrete strength on the crushing effect of RC slabs were investigated. The results show that the increase in reinforcement diameter and the decrease in reinforcement spacing have a significant effect on limiting the development of cracks. According to the development of cracks, they can be divided into three types: edge cracks, cracks between central holes, and cracks between edge holes. The influence of reinforcement spacing and diameter on the first two crack widths is the most obvious. The increase in concrete strength also reduces the width of cracks. Based on the analysis results, the calculation expressions of the crushing effect of the PPD technique on RC slabs were established, which provides theoretical support for the popularization and application of this technique.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773456
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine