0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Prediction of fatigue crack propagation in metals based on IBAS-PF

Author(s):



Medium: journal article
Language(s): English
Published in: Frontiers in Built Environment, , v. 8
DOI: 10.3389/fbuil.2022.948620
Abstract:

Owing to particle leanness, the standard Particle Filter (PF) algorithm is prone to the problem of reduced prediction accuracy when predicting fatigue crack propagation. An improved particle filter algorithm based on the optimization algorithm of beetle antenna search (IBAS-PF) for fatigue crack propagation in metals is proposed in this paper. The discrete Paris formula was used to establish the state equation of fatigue crack propagation, in which the uncertainty of material and crack propagation process were considered. Meanwhile, the characteristics of Lamb wave signals under different crack lengths were extracted to establish the observation equation. The sampling process of the PF algorithm was optimized based on the beetle antennae search algorithm to improve the particle diversity and the prediction accuracy. Compared with the standard PF algorithm, the improved BASO-PF algorithm has higher accuracy for metal fatigue crack propagation, as well as better state estimation ability.

Copyright: © Su Wensheng, Gu Zhenhua, Gu Jiefei, Xue Zhigang
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10693788
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine