0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Predicting the Geopolymerization Process of Fly-Ash-Based Geopolymer Using Machine Learning

Author(s):





Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 12
Page(s): 1792
DOI: 10.3390/buildings12111792
Abstract:

The process of geopolymerization affects the freshness and hardening properties of fly ash base polymer. The prediction of geological polymerization parameters, such as DPT, DPH, GPT, and GPH, is very important for the mixing optimization of FA base polymer. In this study, machine learning models such as backpropagation neural network, support vector regression, random forest, K-nearest neighbor, logistic regression, and multiple linear regression were used to predict the above geological polymerization parameters and explain the influence of composition on the geological polymerization of FA base polymer. Results show that RF was the most stable ML model and had the best predictive performance on the test sets of GPT, GPH, DPT, and DPH, with correlation coefficients of 0.88, 0.95, 0.92, and 0.95, respectively. The variable importance and sensitivity were analyzed by SHapley Additive exPlanations. Results indicate that temperature is the most significant input variable affecting the DPT, DPH, and GPH with SHAP values of 0.09, 4.83, and 1.03, respectively. For GPT, the SHAP value of temperature is 6.89, slightly lower than that of LFR (6.95); yet it is a still significantly important input variable. The mole ratio and alkaline solution concentration were also important and negatively contributed to DPT and DPH, respectively. Besides, both GPT and GPH were sensitive to the mass ratio of liquid-to-fly ash which can promote the geopolymerization extent and shorten the geopolymerization time at a small content. The results of this study pave the way for automatic mixture optimization of FA-based geopolymers.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10699898
  • Published on:
    10/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine