0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Parametric BIM-Based Lifecycle Performance Prediction and Optimisation for Residential Buildings Using Alternative Materials and Designs

Author(s):








Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 904
DOI: 10.3390/buildings13040904
Abstract:

Residential building construction is resource-intensive and significantly impacts the environment by embodied and operational carbon emissions. This study has adopted a parametric building information modelling (BIM)-based approach for a residential building to analyse its lifecycle carbon performance and to evaluate the optimisation potential through alternative material use and design. The study looks at a residential development project, applying an automatic calculation and analysis tool of upfront embodied carbon and BIM-based lifecycle energy simulation to predict carbon emissions from operating the built spaces. A parametric BIM model has been established to aid energy simulation and operational carbon assessment across a 50-year building lifetime, considering 1.5 °C Net-Zero World and 3 °C Hot House World climate scenarios. Various improvement opportunities for future residential development projects, from material selection to operational efficiencies, are explored. This includes quantitative analysis on architectural-structure design, low-carbon construction materials (e.g., cement substitutes, steel scraps, and green hydrogen steel), and novel design for construction approaches (such as modular integrated construction), with discussion around their impacts on optimising the building lifecycle carbon performance. This study provides a deeper understanding and insights into the lifecycle performance of residential buildings to facilitate further exploration of achieving a more sustainable and low-carbon built environment.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728012
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine