0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimization of Arabian-Shield-Based Natural Pozzolan and Silica Fume for High-Performance Concrete Using Statistical Design of Experiments

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/5512666
Abstract:

In this study, the optimum dosages of silica fume (SF) and natural pozzolan (NP) were experimentally and statistically assessed for the best strength and durability properties of high-performance concrete (HPC). SF and NP were used as partial replacement Portland cement (PC) by up to 12 and 25 wt.%, respectively. Additionally, the prediction models based on second-level factorial (SLF) and response surface design (RSD) were formulated to estimate the HPC properties and their validation. The SLF-based model was further employed to investigate the significance and interactions of the PC, SF, and NP blends. The 28-day strength of the blended-cement HPC with a water-to-binder ratio (w/b) of 0.25 was generally higher than that of the control concrete. The positive synergy of PC–NP–SF was also observed in the HPC permeability. The paired t -test of the mean square error (MSE) of the SLF- and RSD-based models revealed that the MSE of the former was notably less than that of the latter. These results established the superiority of the SLF-based model over the RSD-based model. Therefore, the SLF-based model was further employed to investigate the importance of various binders.

Copyright: © 2021 Yassir M. Abbas and M. Iqbal Khan et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602112
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine