0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Optimisation of an elastomeric pre-buckled honeycomb helmet liner for advanced impact mitigation

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Smart Materials and Structures, , n. 9, v. 32
Page(s): 095012
DOI: 10.1088/1361-665x/ace94b
Abstract:

Advances in computational modelling now offer an efficient route to developing novel helmet liners that could exceed contemporary materials’ performance. Furthermore, the rise of accessible additive manufacturing presents a viable route to achieving otherwise unobtainable material structures. This study leverages an established finite element-based approach to the optimisation of cellular structures for the loading conditions of a typical helmet impact. A novel elastomeric pre-buckled honeycomb structure is adopted and optimised, the performance of which is baselined relative to vinyl nitrile foam under direct and oblique loading conditions. Results demonstrate that a simplified optimisation strategy is scalable to represent the behaviour of a full helmet. Under oblique impact conditions, the optimised pre-buckled honeycomb liner exceeds the contemporary material performance when considering computed kinematic metrics head and rotational injury criterion, by up to 49.9% and 56.6%. Furthermore, when considering tissue-based severity metrics via finite element simulations of a human brain model, maximum principal strain and cumulative strain density measures are reduced by 14.9% and 66.7% when comparing the new material, to baseline.

Copyright: © 2023 Rhosslyn Adams, Shwe Soe, Peter Theobald
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10734163
  • Published on:
    03/09/2023
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine