0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Study on Soft Coal Pillar Stability in an Island Longwall Panel

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-13
DOI: 10.1155/2021/8831778
Abstract:

Roadway support and management of longwall panels in an island soft coal panel are always difficult work. In a test mine, stress distribution, deformation characteristic, and plastic zone distribution around the roadway and coal pillars in the development and mining periods were investigated with respect to the widths of different coal pillars using theoretical and simulation methods. The most reasonable width of coal pillars was comprehensively determined, and the field test was conducted successfully. The results show that a reasonable width of coal pillars is 7.0–8.2 m using the analytical method. The distribution of vertical stress in the coal pillars showed an asymmetric “double-hump” shape, in which the range of abutment pressure was about 26.0–43.0 m, and the roadway should be laid away from stress concentration. When the coal pillar width is 5.0–7.0 m, deformation of the roadway is half that with 8.0–10.0 m coal pillar in the development and mining period. The plastic zone in the surrounding rock firstly decreases and increases with increasing coal pillar width; the smallest range occurs with a coal pillar width of 5.0 m. Finally, a reasonable width for coal pillars in an island panel was determined to be 5.0 m. Industrial practice indicated that a coal pillar width of 5.0 m efficiently controlled deformation of the surrounding rock, which was an important basis for choosing the width of coal pillars around gob-side entries in island longwall panels with similar geological conditions.

Copyright: © Qingyun Xu et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10560654
  • Published on:
    03/02/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine