0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Study of Structural Performance and Wind Flow Dynamic Behavior for PPVC Steel Modular Construction (MSC) under Various Extreme Wind Loads

Author(s):

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1347
DOI: 10.3390/buildings12091347
Abstract:

PPVC modular construction building has become one of the most recent construction technologies in the civil engineering sector and has piqued researchers’ interest. Few published studies consider the overall structural response to extreme wind load. As a result, there is a lack of appropriate design for PPVC modular systems under extreme wind standards. However, the existing literature has not yet studied the wind flow dynamic behaviors of PPVC modular steel construction (MSC) systems subjected to extreme wind loads. This paper, therefore, presents a numerical investigation into the structural performance and wind flow dynamic behavior of innovative PPVC modular steel construction (MSC) systems under extreme wind loads. The numerical technique varied in comparison with previous studies. The results showed that the suggested novel (MSC1) modular system is applicable to prevention of extreme wind action up to cyclone 2nd degree, the high story drift resistance compared with previous research, high stiffness performance, and overall strain energy. Additionally, the actual wind velocity surrounding (MSC2) was 31.5% higher compared to the Saffir–Simpson wind speed scale, and the 1.5 wind speed safety factor was suggested.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692648
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine