0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Statistic Approach for Peak Factor of Non-Gaussian Wind Pressure on Building Claddings

Author(s): ORCID


Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/2918656
Abstract:

Wind-induced pressures on high-rise buildings claddings are mostly non-Gaussian distribution, and there is a one-to-one relationship between a specified guarantee rate and its corresponding peak factor. In this study, a stepwise search method for calculating the peak factor of non-Gaussian wind pressure and a gradual independent segmentation method for extracting independent peak values are proposed to determine the relationship accurately. Based on the pressure data of a high-rise building obtained from a rigid model wind tunnel test, the peak factors of non-Gaussian wind pressures on claddings are calculated and compared by using several typical methods. The value of the peak factor and its error rate calculated by several methods is compared with the observed average peak value, and the conversion between the guaranteed rate and the peak factor is discussed. Based on the reliability theory, the true distribution of wind pressure time history was approached infinitely through an efficient numerical method in the process of stepwise search. Compared with the classical Sadek–Simiu method, the proposed stepwise search method achieves improved overall accuracy and applicability. The non-Gaussian features are found to be prominent at leading edge airflow separation on the crosswind side, the leeward corner cuts, the windward corner cuts, and the junction of two leeward surfaces at 45° wind direction angle of square section. The junction of two leeward surfaces at 45° wind direction angle exhibits stronger non-Gaussian features than the crosswind surface at 0° wind direction angle. By giving the identical guarantee rate, the peak factors tend to be much larger in the regions with strong non-Gaussian properties and vice versa.

Copyright: © Tao Ye et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10607733
  • Published on:
    15/05/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine