0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation of Single-Point Mount PZT-Interface for Admittance-Based Anchor Force Monitoring

Author(s):
ORCID

ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 11
Page(s): 550
DOI: 10.3390/buildings11110550
Abstract:

This study investigates the dynamic characteristics of a smart PZT interface mounted on a prestressed anchorage to verify the numerical feasibility of the admittance-based anchor force monitoring technique. Firstly, the admittance-based anchor force monitoring technique through a single-mount PZT interface is outlined. The admittance response of the PZT interface-anchorage system is theoretically derived to show the proof-of-concept of the technique for anchor force monitoring. Secondly, a finite element model corresponding to a well-established experimental model in the literature is constructed. The effect of anchor force is equivalently treated by the contact stiffness and damping parameters at the bottom surface of the anchorage. Thirdly, the admittance and the impedance responses are numerically analyzed and compared with the experimental data to evaluate the accuracy of the numerical modelling technique. Fourthly, the local dynamics of the PZT interface are analyzed by modal analysis to determine vibration modes that are sensitive to the change in the contact stiffness (i.e., representing the anchor force). Finally, the admittance responses corresponding to the sensitive vibration modes are numerically analyzed under the change in the contact stiffness. The frequency shift and the admittance change are quantified by statistical damage indices to verify the numerical feasibility of the anchor force monitoring technique via the smart PZT interface. The study is expected to provide a reference numerical model for the design of the single-point mount PZT interface.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10639469
  • Published on:
    30/11/2021
  • Last updated on:
    02/12/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine