0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Simulation of Fire Suppression in Stilted Wooden Buildings with Fine Water Mist Based on FDS

Author(s): ORCID



Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 207
DOI: 10.3390/buildings13010207
Abstract:

In this paper, to reflect a real fire combustion situation of stilted buildings with a typical wooden structure, we used FDS numerical simulation software to study the suppression effect of a fine-water-mist fire-extinguishing system under different working conditions. The influences of different mist droplet diameters, spray flows, and nozzle densities on the temperature change in the combustion area were analyzed and compared. The particle sizes of fog droplets exhibited a significant impact, indicating that the smaller the particle size, the faster the vaporization rate and the better the cooling effect. The cooling effect was better when the particle size was 150 μm or less when compared to the particle sizes of 200 and 300 μm. As the spray flow rate and nozzle density were increased, the fire field temperature decreased, and the cooling effect was enhanced, optimal at a water-mist flow rate of 8 L/min. Therefore, given the possible working conditions, the spray flow rate and the nozzle density should be high, while a suitable droplet size should be selected to achieve the best fire-extinguishing effect.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712445
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine