0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Numerical Evaluation of Transverse Steel Connector Strengthening Effect on the Behavior of Rubble Stone Masonry Walls under Compression Using a Particle Model

Author(s): ORCID
ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 13
Page(s): 987
DOI: 10.3390/buildings13040987
Abstract:

The structural rehabilitation of historic/traditional rubble masonry wall constructions requires consolidation and retrofitting solutions to be employed in order to withstand dynamic loads, high vertical loads, and differential settlements. One of these strengthening techniques is based on the use of steel bar connectors perpendicular to the wall, considered individually or integrated into more complex strengthening techniques. The aim of this study is to evaluate numerically the strengthening effect of transverse steel connectors on rubble masonry walls. With this purpose, a 2D particle_reinforced model (2D-PMR) was devised and applied to model uniaxial compression tests. The results presented show that predictions calculated using the proposed 2D-PMR model are very close to known experimental results, particularly in the corresponding failure modes, the increase of the maximum uniaxial compression value, and ductility. Parametric studies are also conducted by varying the diameter of the steel bars and the level of strengthening to assess the influence of the bar-bond effect and lateral plates. The presented parametric numerical studies show that (i) a two-level strengthening solution guarantees a similar response to the three-level strengthening solution adopted in the experiments; (ii) it is not relevant to apply a grout injection during the application process of the steel connectors if lateral plates are adopted; and (iii) the 2D-PMR model can be used in the definition of the steel bar diameter and properties; as shown, a smaller (8 mm) bar diameter predicts a similar strengthening effect to the (12 mm) bar size adopted in the experiments. Given the performance of the proposed 2D-PMR model, further work is underway that will allow the 2D-PMR model to numerically assess other reinforcement techniques, namely, reinforced micro-concrete layers and textile reinforced mortar.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728140
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine