0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Molecular Dynamics Simulation of the Effects of Methane Hydrate Phase Transition on Mechanical Properties of Deep-Sea Methane Hydrate-Bearing Soil

Author(s):
ORCID



ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-10
DOI: 10.1155/2021/3716891
Abstract:

In this paper, the methane hydrate phase transition process in deep-sea methane hydrate-bearing soil under heating and compression was simulated by the molecular dynamics method. The evolution of deep-sea methane hydrate-bearing soil’s microstructure, system energy, intermolecular interaction energy, and radial distribution function during heating and compression was investigated. The micromechanism of the influence of the methane hydrate phase transition on the mechanical properties of deep-sea methane hydrate-bearing soil was analyzed. The results demonstrated that the methane hydrate dissociation starts from both sides to the middle and the void spaces between the soil particles had nearly no change during the heating process. For the compression process, the methane hydrate on both sides and the middle dissociated at the same time, and the void spaces became smaller. The methane hydrate phase transition on the effects of mechanical properties of the deep-sea methane hydrate-bearing soil is mainly caused by three aspects. (1) the dissociation of methane hydrate incurs the decrease of methane hydrate saturation. The free water and methane molecules generated cannot migrate in time and thus lead to the increase of excess pore water press and excess pore gas press. (2) The dissipated energy causes the decrease of the effective stress between the soil particles. (3) Due to the methane hydrate decomposition, the free water molecules increase, which reduces the friction of soil particles.

Copyright: © Yanmei Zhang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10646731
  • Published on:
    10/01/2022
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine