0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mitigation of Tsunami Debris Impact on Reinforced Concrete Buildings by Fender Structures

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 12
Page(s): 66
DOI: 10.3390/buildings12010066
Abstract:

Buildings located in coastal regions are prone to tsunami dangers, which often carry debris in the form of shipping containers and boats. This paper presents an approach for the design of fender structures to minimize debris impacts on buildings. The impact of shipping containers, which are categorized as large debris, is considered in the study. Since the weights of shipping containers are standardized, the impact energy can be related to other debris. For a fender structure, cone-type rubber fenders are used to resist the impact of the shipping container. Various fender reactions are considered as parameters to study the efficiency of the fenders. The displacement-controlled nonlinear static analysis is carried out to determine the building capacity. The energy approach for shipping container impact is used to evaluate the resistance of the building. Capacity curves, energy absorptions, inter-story drift ratios of the buildings with and without a fender structure, and the efficiency of the fender are presented. The buildings with a fender structure can absorb the energy from the impact of a loaded shipping container. Conversely, the building without a fender structure cannot resist the impact of a loaded shipping container. From the obtained results, a recommendation is given for buildings with a fender structure. The hydrodynamic force on the fender structure is transferred to the main building through the fender. Hence, the yield force of the fenders affects the performance of the main building that must be considered in the design.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10657636
  • Published on:
    17/02/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine