0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical and Thermal Properties of Composite Precast Concrete Sandwich Panels: A Review

Author(s):
ORCID

ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 12
Page(s): 1429
DOI: 10.3390/buildings12091429
Abstract:

Precast concrete sandwich panels (PCSPs) are utilized for the external cladding of structures (i.e., residential, and commercial) due to their high thermal efficiency and adequate composite action that resist applied loads. PCSPs are composed of an insulating layer with high thermal resistance that is mechanically connected to the concrete. In the recent decades, PCSPs have been a viable alternative for the fast deployment of structures due to the low fabrication and maintenance cost. Furthermore, the construction of light and thin concrete wythes that can transfer and resist shear loads has been achieved with the utilization of high-performance cementitious composites. As a result, engineers prefer PCSPs for building construction. PCSP design and use have been examined to guarantee that a building is energy efficient, has structural integrity, is sustainable, is comfortable, and is safe. Hence, this paper reviews the expanding knowledge regarding the current development of the mechanical and thermal properties of the PCSPs components; subsequently, future potential research directions are suggested.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10692644
  • Published on:
    23/09/2022
  • Last updated on:
    10/11/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine