0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Mechanical and Thermal Conductivity Study of Inorganic Modified Raw Soil Materials Based on Gradient Concept

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2155
DOI: 10.3390/buildings13092155
Abstract:

Based on the inorganic modification of raw soil materials by using cement, fly ash, lime and other admixtures, the influence of modified jute fiber content on the strength of raw-soil-based wall materials was studied. The effects of the gradient distribution of inorganic admixtures on the mechanical properties and thermal conductivity of raw-soil-based wall materials were studied and compared by designing the gradient distribution and homogenous distribution of admixtures in raw soil materials. The results show that when the mass ratio of raw soil, sand, cement, fly ash and lime is 30:10:5:3:2, the compressive strength and flexural strength of the modified raw soil specimen at 28 d are 6.4 MPa and 2.9 MPa, respectively; on the basis of the further addition of 0.8 v% jute fibers, the strength can still be enhanced by 20% and its thermal insulation properties will also be improved. Gradient design can further improve the mechanical properties of modified raw-soil-based wall materials and can weaken the loss of its inherent thermal insulation function.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737384
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine