0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Measurement of Degree of Compaction of Fine-Grained Soil Subgrade Using Light Dynamic Penetrometer

Author(s):




Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2018
Page(s): 1-8
DOI: 10.1155/2018/1364868
Abstract:

To determine the degree of compaction of subgrades filled with fine-grained soil, the compaction test and light dynamic penetrometer (LDP) test were carried out for low liquid-limit clay samples with different water contents in laboratory. Then, a prediction equation of the penetration ratio (PR) defined as the depth per drop of the hammer of LDP, degree of compaction (K), and water content (ω) was built. After that, the existing fine-grained soil subgrades on LDP-based field tests were excavated. The on-site PR values, water contents, and degrees of compaction of slopes were obtained. The estimated degrees of compaction using the prediction equation were compared with measured values of the degree of compaction in field. The results show that there is good consistency between them, and an error within 3.5% was obtained. In addition, the water content should be determined firstly while using the prediction equation which is proposed in this study. Therefore, a numerical method of the water content of a subgrade was developed, and the predicted and measured water contents were compared, which shows a relatively high relativity. Then, the degree of compaction of fine-grained soil subgrades can be calculated according to the predicting equation, which involves the penetration ratio (PR) and the numerically calculated water content as input instead of the measured value in the field.

Copyright: © 2018 Junhui Zhang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10176557
  • Published on:
    30/11/2018
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine