0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Local Thermal Comfort and Physiological Responses in Uniform Environments

Author(s):

ORCID


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 59
DOI: 10.3390/buildings14010059
Abstract:

The thermal perception of different body parts can vary greatly throughout the human body and have different influences on overall thermal sensation and comfort. Various personal comfort systems (PCS) have been developed to stimulate local body parts for the purpose of enhancing human thermal comfort, yet the most effective body parts for intervention remain undetermined. Therefore, a series of climate chamber experiments under five uniform environments with three sets of suits were conducted in this study. The results showed that the head, chest, belly, and hands tended to feel no cooler than overall in cooler environments, but arms and legs felt generally no warmer than overall in warmer environments. The head, trunk and upper arms were more likely to be the comfort-dominant body parts. Additionally, the upper arms and upper back expected temperature regulation measures the most under non-neutral environments, thus they seem to be the two most needed and effective targeted body parts that a PCS could be applied to. The skin temperature and thermal sensation of limbs were more sensitive to indoor air temperatures than those of the torso. However, variations in the skin temperature of the head, chest, upper back, and calves had the strongest correlation with overall sensation vote changes. The above results and conclusions can not only serve as the basis for the future studies of local thermal comfort, but also provide theoretical guidance for the design of future PCS products.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10753795
  • Published on:
    14/01/2024
  • Last updated on:
    07/02/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine