0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Life cycle energy analysis of residential wooden buildings versus concrete and steel buildings: A review

Author(s):

Medium: journal article
Language(s): English
Published in: Frontiers in Built Environment, , v. 8
DOI: 10.3389/fbuil.2022.975071
Abstract:

Around 40% of global energy consumption can be attributed to the construction sector. Consequently, the development of the construction industry towards more sustainable solutions and technologies plays a crucial role in the future of our planet. Various tools and methods have been developed to assess the energy consumption of buildings, one of which is life cycle energy analysis (LCEA). LCEA requires the energy consumption at each stage of the life cycle of a product to be assessed, enabling the comparison of the impact of construction materials on energy consumption. Findings from LCEAs of buildings suggest that timber framed constructions show promising results with respect to energy consumption and sustainability. In this study a critical analysis of 100 case studies from the literature of LCEAs conducted for residential buildings is presented. Based on the studied material, the embodied, operational, and demolition energies for timber, concrete and steel buildings are compared and the importance of sustainable material selection for buildings is highlighted. The results reveal that on average, the embodied energy of timber buildings is 28–47% lower than for concrete and steel buildings respectively. The mean and median values of embodied emissions are 2,92 and 2,97 for timber, 4.08 and 3,95 for concrete, and 5,55 and 5,53 GJ/m² for steel buildings. Moreover, the data suggests that the energy supply system of residential buildings plays a larger role in the operational energy consumption that the construction material. In addition, climate conditions, insulation detail, windows and building surfaces, and building direction are the other energy use role players. Finally, it was found that the demolition energy contributes only a small amount to the total life cycle energy consumption. This study demonstrates the significance of embodied energy when comparing the life cycle energy requirements of buildings and highlights the need for the development of a more standardised approach to LCEA case studies.

Copyright: © 2022 Daniela Schenk, Ali Amiri
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10702886
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine