0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Fresh and Hardened Properties of Cementitious Composites Incorporating Firebrick Powder from Construction and Demolition Waste

Author(s): ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 45
DOI: 10.3390/buildings13010045
Abstract:

Firebricks are generally used in furnace basins where glass, ceramics, and cement are produced. Firebricks have an important place in construction and demolition waste (CDW). However, there is a limited understanding of the effects on fresh and hardened state properties of cementitious composites. This study investigates the mechanical, physical, and microstructural properties of cementitious composites incorporating firebrick powder (FBP) from CDW. In this regard, the FBP was used at 5, 10, 15, 20, and 25% replacement ratio by weight of cement to produce cementitious composites. The consistency, setting characteristics, and 3, 7, and 28 days compressive and flexural strength tests of produced cementitious composites were performed. In addition, ultrasonic pulse velocity, water absorption, porosity, unit weight, and microstructure analysis of cementitious composites were conducted. As a result, the 28-day compressive strength of the cementitious composite mortars containing up to 10% firebrick powder remained above 42.5 MPa. The flow diameters increased significantly with the increase of the FBP. Therefore, it has been determined that the FBP can be used up to 10% in cementitious composites that require load-bearing properties. However, FBP might be used up to 25% in some cases. Using waste FBP instead of cement would reduce the amount of cement used and lower the cost of producing cementitious composites.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712089
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine