0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Fragility Analysis of Wind-Induced Collapse of a Transmission Tower Considering Corrosion

Author(s): ORCID
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 10, v. 12
Page(s): 1500
DOI: 10.3390/buildings12101500
Abstract:

To investigate the variation law of the wind-resistant performance of transmission towers during their operation, this paper proposes an evaluation method for the wind resistance of the transmission tower considering corrosion, and a 220-kV transmission tower is analyzed as an example. Considering the uncertainty of the material and geometric parameters, the wind-induced collapse of the transmission tower was analyzed, and the collapse wind speeds were obtained via pushover and incremental dynamic analyses. In addition, the sensitivity of the transmission tower to various parameters was analyzed. Based on the existing meteorological and corrosion data, corrosion prediction models were established using a back-propagation (BP) artificial neural network, and the mean relative error between the predicted and measured values of the test samples was 8.91%. On this basis, the corrosion depth of the tower members in the four regions was predicted, and the fragility of the transmission tower was analyzed considering the effects of corrosion and strong winds. The results show that the collapse wind speed of the transmission tower is most significantly affected by the thickness of the angle steel, followed by the elastic modulus and yield strength, and is less affected by the width of the angle steel. When the exposure time was 25 years, the wind-resistant performance of transmission towers in regions with severe acid rain and coastal industrial regions decreased by 10% to 20%. With an increase in exposure time, the failure mode of the transmission tower tended to be brittle failure.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700221
  • Published on:
    11/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine