0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

A Fourier Series-Based Multi-Point Excitation Model for Crowd Jumping Loads

Author(s):



ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1782
DOI: 10.3390/buildings13071782
Abstract:

Crowd jumping loads are often simplified to a single-point excitation in the existing Fourier series-based models, most of which lack the data support of crowd jumping experiments. A Fourier series-based multi-point excitation model for crowd jumping loads is herein developed, where two parameters, the jumping frequency, and the time lag shift, are selected to quantify the crowd synchronization. After the verification of 3D motion capture technology, the probability distributions of the jumping frequency and the time lag shift are modeled based on the crowd jumping experiment, in which the trajectories of the reflective markers of 48 test subjects were simultaneously recorded by 3D motion capture technology. Through repeated sampling, the jumping load of each person in a crowd is simulated. This model could offer a useful method for evaluating the vibration performance of assembly structures like grandstands, gymnasiums, and concert venues.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737046
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine