0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Failure Probability and Economic Loss Assessment of a High-Rise Frame Structure under Synthetic Multi-Dimensional Long-Period Ground Motions

Author(s):
ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 14
Page(s): 252
DOI: 10.3390/buildings14010252
Abstract:

Multiple research studies and seismic data analyses have shown that multi-directional long-period ground motion affects crucial and intricate large-scale structures like oil storage containers, long-span bridges, and high-rise buildings. Seismic damage data show a 3–55% chance of long-period ground motion. To clarify, the chance of occurrence is 3% in hard soil and 83% in soft soil. Due of the above characteristics, the aseismic engineering field requires a realistic stochastic model that accounts for long-period multi-directional ground motion. A weighted average seismic amplification coefficient selected NGA database multi-directional long-period ground motion recordings for this study. Due to the significant low-frequency component in the long-period ground motion, this research uses empirical mode decomposition (EMD) to efficiently decompose it into a composite structure with high- and low-frequency components. Given the above, further investigation is needed on the evolutionary power spectrum density (EPSD) functions of high- and low-frequency components. Analyzing the recorded data will reveal these functions and their corresponding parameters. Proper orthogonal decomposition (POD) is needed to simulate samples of high- and low-frequency components in different directions. These samples can be combined to illustrate multi-directional long-period ground motion. Representative samples exhibit the seismic characteristics of long-period multi-directional ground motion, as shown by numerical examples. This proves the method’s engineering accuracy and usefulness. Moreover, this study used incremental dynamic analysis (IDA) to apply seismic vulnerability theory. This study investigated whether long-period ground motions in both x and multi-directional directions could enhance the seismic response of a high-rise frame structure. By using this method, a comprehensive seismic economic loss rate curve was created, making economic loss assessment clearer. This study shows that multi-directional impacts should be included when studying seismic events and calculating structure economic damages.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10760334
  • Published on:
    23/03/2024
  • Last updated on:
    25/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine