0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Study of Infill Walls with Joint Reinforcement Subjected to In-Plane Lateral Load

Author(s):
ORCID

ORCID

ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 12
Page(s): 259
DOI: 10.3390/buildings12030259
Abstract:

The results of an experimental study of four infilled frames with brick masonry walls subject to reversal cyclic lateral load are presented. The variables studied were the height to length aspect ratio of the wall and the use of joint reinforcement. The investigation was motivated by the fact that the Mexican code establishes the same specifications about the use of joint reinforcement for infill walls as for confined walls, because there is not enough experimental evidence on joint reinforced infill walls. To investigate the possible interaction of the study variables in the seismic performance of the walls, two pairs of specimens, scaled 1:2, with different aspect ratios (H/L = 0.75, 0.41) were tested. The specimens in each pair were identical except that one of them included steel bars into the bed-joints as reinforcement leading to amount  phfyh=0.6 MPa. The infill walls with H/L = 0.41 were included from a previous study. The behavior of the specimens was defined in terms of lateral strength, ductility, displacement capacity, deformation of the joint reinforcement and crack pattern. The results indicate that joint reinforcement increases the strength of the system; however, the increase was more pronounced in longer walls. Ductility was reduced with horizontal reinforcement and this behavior was more important for longer walls. As occurred in confined walls, the joint reinforcement generates a more distributed cracking and reduces the width of the cracks. The experiments are described and this and other results are discussed in detail.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10661242
  • Published on:
    23/03/2022
  • Last updated on:
    01/06/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine