0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Investigation of the Explosion Effects on Reinforced Concrete Slabs with Fibers

Author(s): ORCID


ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 1080
DOI: 10.3390/buildings14041080
Abstract:

In today’s world, concrete structures are exposed to various influences, including explosive actions. With the increasing use of fiber-reinforced concrete (FRC), it is essential to investigate its response to blast effects. As there are few studies on this topic worldwide, this research is dedicated to the question of how blast effects affect the damage and properties of six different types of reinforced concrete (RC) slabs. These samples differ in concrete classes (C30/37 and C50/60) and in the type of fibers added (steel and polypropylene). Visual inspections and non-destructive measurements are carried out before and after blasting. The damaged area of the concrete surface is determined by visual inspection, while non-destructive measurements evaluate parameters such as the rebound value of the Schmidt hammer, the electrical resistivity of the concrete, the velocity of the ultrasonic wave, and the dynamic modulus of elasticity. Equal amounts of explosives are applied to five of the RC slabs to enable a comparative analysis of the resulting damage. Based on the comparison of the measured data from these five RC slabs, conclusions are drawn regarding the effects of the explosive impacts on conventionally reinforced concrete slabs compared to those with added fibers. In addition, one of the RC slabs with steel fibers is exposed to approximately three times the amount of explosives to assess the extent of increased damage and to evaluate the suitability of military standards in the calculation of explosive charges for blasting RC elements with fibers.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773445
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine