0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Experimental Investigation of Light Steel Framing Walls under Horizontal Loading

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 1, v. 13
Page(s): 193
DOI: 10.3390/buildings13010193
Abstract:

The mechanical behavior of light steel framing (LSF) walls under horizontal (shear) loadings is reported and assessed in this paper. In total, an experimental program with twelve LSF walls (six under monotonic and six under cyclic loading) was conducted, and the main parameters investigated were (i) the thickness and (ii) the material used as the cladding (OSB, a plasterboard, and a steel sheet), (iii) the spacing between fasteners (150 or 75 mm), and (iv) the influence of using steel bracing elements. It is concluded that doubling the number of fasteners and increasing the thickness of OSB by 80% lead to increases in ultimate loads, respectively, of 33 and 13%. The ductility index of the walls with steel sheets was 50 to 75% lower than those of the remaining walls. The wall with the steel strap x-bracing system presented (i) the lowest initial rigidity (a diaphragm effect could not be triggered with these elements) and (ii) the highest damage extent at the end of testing (a damage parameter of 0.85, due to damage of the steel strap-to-steel structure connection). It is confirmed that the results obtained with testing of the walls under a monotonic load can be good predictors of their behavior under cyclic loading as, for instance, the ultimate loads of walls under both loading cases present an average difference of 4%.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10712554
  • Published on:
    21/03/2023
  • Last updated on:
    10/05/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine