0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Ethylene Propylene Diene Monomer (EPDM) Effect on Asphalt Performance

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 8, v. 11
Page(s): 315
DOI: 10.3390/buildings11080315
Abstract:

The asphalt industry is increasingly developing with greater focus on sustainability. This study focuses on the benefits of a binder modification of stone mastic asphalt (SMA) by adding a rubber—ethylene propylene diene monomer (EPDM)—into a class 320 bitumen. This study observes the advantages that occur for the rutting and fatigue performance of the samples. The binder modification was made by incorporating 0, 2, 4 and 6% binder weight into each sample. The tests performed on the samples were the wheel-tracking test and the four-point beam bending test. The results revealed varied outcomes, with the four-point beam bending test showing the 6% sample having the highest initial stiffness and modulus of elasticity but the lowest cycle to failure. Therefore, the best performer was determined as the 4% sample, which performed consistently throughout, having the highest cumulative dissipated energy and second-highest initial flexural stiffness, modulus of elasticity and cycle to failure results. There was a clear indication of the best performer for the wheel-tracking test, with the 4% sample having the lowest rut depth, although there were signs of further improvement to be achieved within the 4–6% range. In addition, drain-off tests were conducted on the mixtures, and the addition of EPDM significantly reduced the SMA drain-off values. Overall, the best improvements through binder modification for an SMA mix with EPDM concerning fatigue and rutting resistance came from a 4% incorporation.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10625799
  • Published on:
    26/08/2021
  • Last updated on:
    14/09/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine