0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Estimation of Uniform Risk Spectra Suitable for the Seismic Design of Structures

Author(s):
ORCID
ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 9, v. 13
Page(s): 2165
DOI: 10.3390/buildings13092165
Abstract:

The aim of this paper is to present a performance-based method to estimate uniform risk spectra (URS) for the seismic design and assessment of structures. These spectra, computed with the proposed methodology, provide the lateral capacity (in terms of spectral acceleration) that should be given to a structure, characterized by a reference single degree of freedom system, to achieve a predetermined exceedance rate of economic loss. This procedure involves the seismic hazard assessment necessary to define a seismic design level consistent with the accepted loss value, using a large enough number of synthetic seismic records of several magnitudes, which were obtained by means of an improved empirical Green function method. The statistics of the expected losses of a reference single degree of freedom system are obtained using Monte Carlo simulation, considering the seismic demand and the lateral strength of the structure as random variables. The method is divided into two main stages: (1) definition of the seismic hazard at the site of interest and (2) the probabilistic analysis of the seismic performance in terms of an economical loss ratio of nonlinear SDOF. To illustrate the proposed methodology and, subsequently, to validate it, a URS was computed for a site located in the Mexico City lake-bed zone, and its use in the design of three reinforced concrete frames is shown. The results show that the proposed spectra provide a sufficient approximation between the seismic risk level considered in the seismic design and that of the designed structure. It is concluded that the proposed procedure is a significant improvement over others considered in the literature and a useful research tool for the further development of risk-based earthquake engineering.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737626
  • Published on:
    02/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine