0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

An Enhanced UHPC-Grout Shear Connection for Steel-Concrete Composite Bridges with Precast Decks

Author(s): ORCID


ORCID
Medium: journal article
Language(s): English
Published in: Advances in Civil Engineering, , v. 2021
Page(s): 1-15
DOI: 10.1155/2021/5595174
Abstract:

This article develops an enhanced UHPC-grout shear connection for steel-concrete composite bridges with precast decks. The primary improvement is the use of ultra-high performance concrete (UHPC) as the connection grout. To validate the constructability and the mechanical performance of the new connection, two series of experimental tests (including grouting tests and push-out tests) were conducted. Results from the grouting tests show that both the pressure grouting method and the self-levelling grouting method are applicable to inject the UHPC grout into the channel void of the connection. Results from the push-out tests indicate that the advanced properties of UHPC allow for a significant improvement of the shear resistance of the adhesive connection over traditional cementitious grouts. The ultimate shear capacity of the adhesive connection is controlled by the interface shear strength between the embossed steel and the UHPC grout, with a cohesion value of approximately 5.87 MPa. Meanwhile, the residual frictional resistance can be taken as approximately one-half of the ultimate resistance. The results of the finite-element analysis show that the trilinear model is reasonable to simulate the shear-slip laws of the embossed steel-grout interface and the rough concrete-grout interface.

Copyright: © Yongtao Zhang et al.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10609872
  • Published on:
    08/06/2021
  • Last updated on:
    17/02/2022
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine