0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

The Effect of Microbiologically Induced Concrete Corrosion in Sewer on the Bearing Capacity of Reinforced Concrete Pipes: Full-Scale Experimental Investigation

Author(s): ORCID





Medium: journal article
Language(s): English
Published in: Buildings, , n. 11, v. 12
Page(s): 1996
DOI: 10.3390/buildings12111996
Abstract:

The main part of sewer pipelines is commonly made up of precast reinforced concrete pipes (RCPs). However, they often suffer from microbiologically induced concrete corrosion (MICC), which has made them less durable than expected. In this study, three-edge bearing tests (TEBT) are performed on full-scale RCPs with preset wall losses to determine how MICC influences their bearing performance. For this purpose, several bearing indices such as D-load, peak load, ultimate load, ring deflection, ring stiffness, and failure energy are presented or specified to characterize the load-carrying capacity, stiffness, and toughness of these RCPs. It is found that crown concrete corrosion hardly changes the mechanical behavior of the first elastic zone of RCPs, so that D-load is not affected, but it shortens the crack propagation zone significantly, leading to a reduction in ultimate and peak loads. Furthermore, RCPs’ ring stiffness and toughness are negatively correlated to thickness of wall loss, while the transverse deformability of the ring cross-section is positively correlated with it. Additionally, it was found that crown corrosion affects the ultimate load of different sizes of RCP in different ways. The 2000 mm RCP is affected the most, with a 50 percent reduction in ultimate load. The 1000 mm RCP follows, with a 36 percent reduction, and the 1500 mm RCP has a reduction of less than 20 percent. This research contributes to comprehending the degradation of in-service sewage pipes, hence informing decision making on sewer maintenance and rehabilitation.

Copyright: © 2022 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10700247
  • Published on:
    10/12/2022
  • Last updated on:
    15/02/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine