0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Effect of Calcium Aluminate and Carbide Slag on Mechanical Property and Hydration Mechanism of Supersulfated Cement

Author(s):


Medium: journal article
Language(s): English
Published in: Buildings, , n. 4, v. 14
Page(s): 930
DOI: 10.3390/buildings14040930
Abstract:

Supersulfated cement (SSC), a low-carbon, energy-efficient, eco-friendly cementitious material, is mainly made from industrial byproducts. However, SSC’s slow early strength development leads to inadequate initial hardening and reduced durability, which restricts its practical application. This study investigated the potential enhancement of SSC by incorporating calcium aluminate (CA) and carbide slag (CS) alongside anhydrite as activators to address its slow early strength development. The effects of varying CA and CS proportions on the mechanical property and hydration mechanism of CA-CS-SSC were examined. Results indicate that employing 1% CA and 4% CS as alkaline activators effectively activates slag hydration in the 1CA-4CS-SSC, achieving a compressive strength of 9.7 MPa at 1 day. Despite the limited improvement in early compressive strength of other mixtures with higher CA and lower CS proportions in the CA-CS-SSC system, all mixtures exhibited enhanced compressive strength during long-term hydration. After 90 days, ettringite formation in the CA-CS-SSC system decelerated, whereas anhydrite remained. Concurrently, the formation of C-S-H continued to increase, promoting late compressive strength. The mechanism for enhancing the early compressive strength of the CA-CS-SSC system is attributed to the swift hydration of CA with anhydrite, dissolution of fine slag particles, and reaction with anhydrite under conditions with suitable alkali content to augment the ettringite production. This process also generates a C-S-H and OH-hydrotalcite to fill the void in the skeleton structure formed by ettringite, resulting in a dense microstructure that improves early compressive strength.

Copyright: © 2024 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10773515
  • Published on:
    29/04/2024
  • Last updated on:
    29/04/2024
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine