0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Dynamic Response of a Long-Span Double-Deck Suspension Bridge and Its Vibration Reduction

Author(s):




Medium: journal article
Language(s): English
Published in: Buildings, , n. 7, v. 13
Page(s): 1791
DOI: 10.3390/buildings13071791
Abstract:

This paper presents a dynamic analysis of a long-span double-deck suspension bridge subjected to random traffic loading using a Finite Element (FE) model. During this study, the influence of various traffic parameters, such as vehicle speed, traffic volume, traffic weight, and the location of the passing girder, on the longitudinal movement of the girders was investigated. The results reveal that schemes with double girders passing can lead to greater longitudinal displacement of the girder as compared to a long-span bridge with a single passing girder. However, the incorporation of fluid-viscous dampers at the ends of the girders significantly reduces the displacement range of each node. For instance, at the left end of the bridge, the original model (without dampers) exhibits a displacement range of approximately 0.01–0.056 m, whereas the constrained model (with dampers) shows a range of 0.025–0.033 m. A quantitative analysis demonstrates that higher damping coefficients (or smaller damping exponents) can further mitigate the girder’s movement.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10737174
  • Published on:
    03/09/2023
  • Last updated on:
    14/09/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine