0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Development of Engineered Cementitious Composites (ECCs) Incorporating Iron Ore Tailings as Eco-Friendly Aggregates

Author(s):





ORCID
Medium: journal article
Language(s): English
Published in: Buildings, , n. 5, v. 13
Page(s): 1341
DOI: 10.3390/buildings13051341
Abstract:

In this study, iron ore tailings (IOTs) are used as aggregates to prepare iron-ore-tailing-engineered cementitious composites (IOT-ECCs) to achieve clean production. Some mechanical indexes, such as compressive strength (fcu), four-point flexural strength (ff), axial compressive strength (fc), deformation properties, flexural toughness, and stress–strain behavior, are studied. The mass loss, fcu loss, relative dynamic modulus elasticity (RDEM), and deterioration mechanism after the sulfate freeze–thaw (F-T) cycle are discussed in detail. In addition, pore structure analysis is performed using nuclear magnetic resonance (NMR), while a scanning electron microscope (SEM) is utilized to study the micro-morphology. The results showed that under the 20–80% IOT replacement ratio, IOT-ECCs exhibited improvements in their mechanical properties, pore structure, and resistance to sulfate freeze–thaw (F-T). The most notable mechanical properties and sulfate F-T resistance were demonstrated by the IOT-ECC with 40% IOTs (namely, IOT40-P2.0). Meanwhile, IOT40-P2.0 exhibited good pore structure as well as the bonding interface of the PF and the matrix. The pore structure and compactness of the matrix of IOT-ECCs gradually deteriorated as the F-T cycle increased. The research results will promote the application of IOTs in ECCs.

Copyright: © 2023 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10728577
  • Published on:
    30/05/2023
  • Last updated on:
    01/06/2023
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine