0
  • DE
  • EN
  • FR
  • International Database and Gallery of Structures

Advertisement

Assessing the Moisture Load in a Vinyl-Clad Wall Assembly through Watertightness Tests

Author(s): ORCID

ORCID

Medium: journal article
Language(s): English
Published in: Buildings, , n. 3, v. 11
Page(s): 117
DOI: 10.3390/buildings11030117
Abstract:

The moisture load in wall assemblies is typically considered as 1% of the Wind Driving Rain (WDR) load that is deposited on the surface of wall assemblies as specified in the ASHRAE-160 standard whereas this ratio has been shown to be inaccurate as compared to results derived from several watertightness tests. Accurate assessment of moisture loads arising from WDR can be obtained through the watertightness test during which different levels of WDR intensities and Driving Rain Wind Pressures (DRWPs) are applied to a test specimen and water that penetrates wall assembly can thus be quantified. Although many previous studies have included watertightness tests, only a few of these have attempted to correlate the moisture loads to WDR conditions as may occur in specific locations within a country. To improve the assessment of moisture loads for a vinyl-clad wall assembly, a wall test specimen was tested following a test protocol based on local climate data using National Research Council of Canada’s Dynamic Wind and Wall Testing Facility (DWTF). The use of this test protocol permitted quantifying the moisture load in the vinyl wall assembly when subjected to several different simulated WDR conditions. The moisture load was formulated as a function of the WDR intensity and DRWP which thereafter allowed evaluating the moisture load based on a given climate’s hourly rainfall intensity and wind velocity. Such work is particularly relevant considering that the intensity, duration and frequency of WDR events across Canada will in some regions increase due to the effects of climate change.

Copyright: © 2021 by the authors; licensee MDPI, Basel, Switzerland.
License:

This creative work has been published under the Creative Commons Attribution 4.0 International (CC-BY 4.0) license which allows copying, and redistribution as well as adaptation of the original work provided appropriate credit is given to the original author and the conditions of the license are met.

  • About this
    data sheet
  • Reference-ID
    10602559
  • Published on:
    17/04/2021
  • Last updated on:
    02/06/2021
 
Structurae cooperates with
International Association for Bridge and Structural Engineering (IABSE)
e-mosty Magazine
e-BrIM Magazine