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Abstract 
In this paper, the test results of the column under combined loading conditions are reported.  The 
shallow I-shaped steel section that is typical for the column was selected for the specimen.  The 
section’s width-thickness ratio is compact (class 1), and a ductile behaviour can be expected.  The 
axial force level and slenderness ratio were the testing parameters, and 11 specimens were 
prepared.  The testing found that most specimens achieved full-plastic bending moment capacity 
even if they did not fulfil the design requirements.  On the other hand, some specimens did not 
reach the ductility shown in the design recommendation.  Lateral torsional buckling was the 
dominant failure mode; however, the ultimate limit state that was determined by Pd-effects was 
also confirmed from the testing.  Finally, a design recommendation that is not stipulated in the 
current design recommendation is proposed. 

Keywords: shallow I-shaped steel column; axial force ratio; slenderness ratio; maximum bending 
moment; plastic deformation capacity. 
 

 

1 Introduction 
The columns in the moment-resisting frames will 
resist the horizontal load action in a flexural 
manner.  In this situation, the column will be 
subject to axial force with bending moment, a so-
called Beam-Column (i.e., combined loading 
condition).  In the seismic design, strength and 
ductility must be provided to the structural 
members.  The columns are designed based on the 
Strong-Column Weak-Beam principles; however, 
under the unpredictable seismic excitation, 
columns shall provide ductility to avoid the collapse 
of the framing system.  Especially in the steel 
frame, members tend to be slender, and stability 
will be an essential design aspect.  In this paper, an 
I-shaped steel column is selected as the specimen; 
the structural behaviour under combined loading 
conditions was studied by testing. 

2 Testing 
Usually, the I-shaped steel column will be used to 
subject bending moment around the strong axis.  
Testing was conducted under that load condition 
where the axial force and strong axis bending were 
applied simultaneously to the specimen.  

2.1 Specimens 
Table 1 summarizes the geometrical properties of 
the cross-section used for the specimen.  I-shaped 
cross-section H-125x125x6.5x9 where the steel 
grade is SS400 [1] was selected.  The material 
properties of the flange and web are shown in 
Table 2.  Table 3 shows the length and 
corresponding non-dimensional slenderness ratio 
of the test specimens.  The non-dimensional 
slenderness ratio is defined as follow. 
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